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Abstract. The partial-wave Schrödinger equation with real boundary conditions is recast as an
equation for the probability density. When a small additional potential is included, the changes in the
bound-state energy eigenvalues are obtained, up to third order in the perturbation, purely in terms of
the perturbing potential and the unperturbed probability density. Although the approach is different,
our results are equivalent to those derived by Bender (Bender C M 1978 Advanced Mathematical
Methods for Scientists and Engineers (New York: McGraw-Hill) p 330). Knowledge of neither
the unperturbed energy spectrum nor the wavefunctions of excited states is required. Evaluations
of the second-order energy shift are given for some soluble S-wave problems.

1. The probability equation

Almost all calculations in non-relativistic quantum mechanics are carried out within the
framework of the Schrödinger equation. However, for bound-state problems, or more generally
for any stationary problem where the wavefunction can be taken to be real, it is possible to work
directly with an equation for the probability density [1]‡. To see how this comes about, consider
the reduced S-wave time-independent Schrödinger equation for the motion of a particle of mass
m and energy E in a spherically symmetric potential U(r):

u′′(r) = [U(r) − E]u(r) (1.1)

where E and U(r) are measured in units of h̄2/2m. Provided that the wavefunction u(r) is
real, it is related to the probability density P(r) by

P(r) = [u(r)]2. (1.2)

Multiplying the Schrödinger equation by 2u3 and adding a term 2u2u′2 to both sides, we find
that P(r) satisfies the second-order nonlinear equation:

PP ′′ = 1
2 (P

′)2 + 2P 2(U − E). (1.3)

Although we shall mainly work with equation (1.3), it is of interest that one can derive from
this a third-order linear equation for P by differentiating equation (1.3) and dividing by P :

P ′′′ − 4(U − E)P ′ − 2U ′P = 0. (1.4)

After the inclusion of a centrifugal barrier term in an effective potential Ueff(r), the derivation
for higher angular momenta follows through in a similar manner. The bound-state spectrum

† Present address: Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK.
‡ The probability equation was used without citation, though it must be much older than this.
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and probability densities may be obtained by resolving equation (1.4), though at the expense
of imposing one extra boundary condition as compared to the Schrödinger equation.

It is the aim of this paper to develop time-independent perturbation theory for spherically
symmetric perturbations within the framework of the probability equation. It is important to
note that in the probability approach one cannot exploit directly the orthogonality of different
wavefunctions. As a consequence, one should not obtain the standard second and higher-order
perturbation theory results, which involve sums over intermediate states. However, Bender [2]
has derived a form of perturbation theory where the changes in the energy and wavefunction of
a state can be obtained without requiring information on any of the other states. Although our
approach is completely different, our results for the energy shifts of bound states are equivalent
to those of Bender, though the connection between the probability densities is less transparent
because of the different normalizations employed.

In section 2 we discuss some of the properties of the probability function in the bound state
case. Perturbation theory up to third order in the energy eigenvalue is developed in section 3 for
spherically symmetric perturbations to spherically symmetric systems. The first-order energy
shift depends only upon the unperturbed probability distribution and the perturbing potential.
The surprising result is that this is also true in higher order. Direct information is not required
on the unperturbed potential or energy levels and, of course, unperturbed eigenfunctions of
other states are not employed. Second-order perturbation theory is investigated in detail in
section 4, where different equivalent forms are obtained for the energy shift E2. Values of
E2 are obtained explicitly for simple soluble S-wave examples. For the ground state, where
the probability density has no nodes, it is easy to rederive the standard result that the second-
order shift is negative. This allows one to establish that the variational functional, with the
true probability density, corresponds to a local minimum, and this is discussed in section 5.
Bender’s formalism is contrasted with ours in section 6 and our conclusions are drawn in
section 7.

It will be shown in a later paper that the same ideas can be used in the continuum to
evaluate the change in the phase shift when the potential or the energy is perturbed.

2. Properties of the probability equation

Since the reduced wavefunction u(r) vanishes at the origin, there are two boundary conditions
on equation (1.4) at this point:

P(0) = 0

P ′(0) = 0.
(2.1)

It is the imposition of the second of these which makes the bound-state spectrum correspond to
that of the Schrödinger equation. It should be noted that for the nonlinear equation (1.3), which
is equivalent to the Schrödinger equation, the vanishing of P ′(r) at the origin is guaranteed by
the equation itself.

Furthermore, the localizable density corresponding to a bound state is normalized by∫ ∞

0
P(r) dr = 1. (2.2)

These boundary conditions are sufficient to fix the solutions of the third-order equation in
equation (1.4) and determine the corresponding energy eigenvalues.

In the classical limit of h̄ → 0, both E,U → ∞, so equation (1.4) then reduces to

(U − E)P ′ + 1
2U

′P = O(h̄2) (2.3)



Quantum probability equation: I 7355

which has the correct classical solution of

P(r) ≈ C√
E − U(r)

. (2.4)

It is also easy to show that any zero of P(r) is of even order so, if the probability is positive
at small distances, then it remains non-negative for all r . u′(r) is continuous at these zeros and
so one can deduce uniquely the form of u(r) from the solution for P(r). It is straightforward
to solve the probability equation for such standard potentials as the Coulomb or square well
and, if desired, deduce the wavefunctions by taking a square root [3].

3. Bound state perturbation theory

The standard formula for second-order non-degenerate time-independent perturbation
theory [4] involves a sum over excited states and depends upon the orthogonality of the different
wavefunctions. Neither of these features is appropriate when treating equations (1.3) or (1.4),
where the wavefunction can only be constructed in a secondary step. A different approach is
therefore required.

Suppose that the probability equation is soluble for some potential U0(r) with solution
P0(r). Introduce a spherically symmetric perturbation λW(r), such that U(r) = U0(r) +
λW(r), and expand the probability and energies in power series in λ:

P(r) → P0(r) + λP1(r) + λ2P2(r) + λ3P3(r) + · · ·
E → E0 + λE1 + λ2E2 + λ3E3 + · · · . (3.1)

Since the probability must remain normalized to unity for all values ofλ, equation (2.2) requires
that ∫ ∞

0
Pn(r) dr = δn0. (3.2)

Furthermore, the boundary conditions of equation (2.1) at the origin apply separately to each
of the Pn(r), which must also decrease exponentially at large r .

Although the nonlinearity means that one is multiplying more sums together, because
there is one fewer differentiation, it is easiest to insert equations (3.1) into the second-order
equation of equation (1.3) and compare different powers of λ. The order λ0 terms give the
unperturbed equation

P0P
′′
0 = 1

2 (P
′
0)

2 + 2P 2
0 (U0 − E0). (3.3)

3.1. First-order corrections

The order λ1 terms from equation (1.3) yield

P ′′
0 P1 + P ′′

1 P0 − P ′
0P

′
1 − 4(U0 − E0)P1P0 = 2(W − E1)P

2
0 . (3.4)

Substituting for (U0 − E0), from equation (3.3), gives

P ′′
0 P1 + P ′′

1 P0 − P ′
0P

′
1 − 2P1

P0

[
P ′′

0 P0 − 1

2
(P ′

0)
2

]
= 2(W − E1)P

2
0 . (3.5)

After dividing both sides by P0, one recognizes the left-hand side to be an exact derivative,
and therefore

d

dr

[
P ′

1 − P1P
′
0

P0

]
= 2(W − E1)P0. (3.6)
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To find the first-order correction to the energy, integrate both sides between zero and
infinity: [

P ′
1 − P1P

′
0

P0

]∞

0

= 2
∫ ∞

0
(W − E1)P0 dr. (3.7)

Near the origin, P ′
0/P0 ≈ 1/r and P1 vanishes at least as fast as r2, so the left-hand side

vanishes at r = 0. Similarly, as r → ∞, P1 → 0, and P ′
0/P0 is bounded, which means that

the whole of the left-hand side is zero. As a consequence we recover the standard first-order
energy shift

E1 =
∫ ∞

0
WP0 dr. (3.8)

The first-order change in the probability may be found from an indefinite integration of
equation (3.6) [

P ′
1 − P1P

′
0

P0

]r

0

= 2
∫ r

0
P0(W − E1) dr ′ (3.9)

which can be rewritten, as before, as an exact derivative,

d

dr
[P1P

−1
0 ] = 2P−1

0

∫ r

0
P0(W − E1) dr ′. (3.10)

Integrating with respect to r ,

P1 = 2P0

∫ r

0

1

P0

∫ r ′

0
P0(W − E1) dr ′′ dr ′ + CP0. (3.11)

To find the constant of integration C, we insist that the integral of P1 over all r vanishes, as
required by equation (3.2). The first-order perturbation to the probability density function
therefore takes the form

P1 = 2P0

∫ r

0

1

P0

∫ r ′

0
P0(W − E1) dr ′′ dr ′

−2P0

∫ ∞

0
P0

∫ r

0

1

P0

∫ r ′

0
P0(W − E1) dr ′′ dr ′ dr. (3.12)

This is very different in structure to the formula of standard perturbation theory where
the first correction to the wavefunction involves an infinite sum over all the excited states. It
is clear from equation (3.12) that the correction actually depends only upon the form of the
perturbation and the unperturbed probability density.

3.2. Second-order corrections

In evaluating the first-order corrections to both the energy and probability density, it proved
useful to rearrange the equations such that certain combinations of terms became exact
differentials. This is also true in second and higher orders. The coefficient of the λ2 terms,
after some manipulation, can be put into the following form:

P1(E1 − W) + 2E2P0 = d

dr

[
P2P

′
0

P0
− P ′

2 − P 2
1 P

′
0

2P 2
0

+
P1P

′
1

2P0

]
. (3.13)

Integrating this from zero to infinity, the integrated term on the right-hand side drops out,
and we are left with

2E2

∫ ∞

0
P0 dr + E1

∫ ∞

0
P1 dr −

∫ ∞

0
P1W dr = 0. (3.14)
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Since the integral of P1 vanishes, the second-order change in the energy becomes

E2 = 1
2

∫ ∞

0
WP1 dr. (3.15)

Inserting into this the expression for P1, we obtain the final result

E2 =
∫ ∞

0
(W(r) − E1)P0(r) dr

∫ r

0

1

P0(r ′)
dr ′

∫ r ′

0
(W(r ′′) − E1)P0(r

′′) dr ′′ (3.16)

where the integration variables are explicitly indicated. This is probably the most important
result of our work.

The second-order corrections to the probability density are found by evaluating the
indefinite integral of equation (3.13). With judicious rearrangement, this leads to

1

P0

∫ r

0
(E1P1 − WP1 + 2E2P0) dr ′ = d

dr

[
P 2

1

4P 2
0

− P2

P0

]
. (3.17)

An expression for P2 is found by integrating with respect to r:

P2 = P0

∫ r

0

1

P0
dr ′

∫ r ′

0
(WP1 − E1P1 − 2E2P0) dr ′′ +

1

4

P 2
1

P0
+ CP0 (3.18)

where the integration constant C is found by demanding that the integral of P2 over all r

vanishes.

3.3. Third- and higher-order corrections

The higher-order terms become progressively more involved and it becomes harder to find
linear combinations which are exact differentials. We shall only show the result for the third-
order energy change:

E3 = 1
3

∫ ∞

0
WP2 dr. (3.19)

Inserting the expression for P2 from equation (3.18), the third-order shift becomes

E3 = 1

3

∫ ∞

0
(W(r) − E1)P0(r) dr

∫ r

0

1

P0(r ′)
dr ′

×
∫ r ′

0
(W(r ′′)P1(r

′′) − E1P1(r
′′) − 2E2P0(r

′′)) dr ′′

+
1

12

∫ ∞

0
(W(r) − E1)

P1(r)
2

P0(r)
dr. (3.20)

Since the formulae do not involve the unperturbed potential, which might contain a
centrifugal barrier term, they are equally valid for all angular momenta �, provided that the
unperturbed probability density is appropriate. For a well behaved potential this should vary
as r2�+2 at the origin.

The results for the changes in energy and probability distributions have been tested by
changing the spring constant in the harmonic oscillator or the electronic charge in the Coulomb
problem. Excited states in these problems are handled just as easily as the ground state [3].
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4. Second-order perturbation theory

4.1. Formalism

In practical terms, it is the second-order energy shift of equation (3.16) which is potentially
the most valuable result, and this may be recast in several alternative forms. Thus

E2 =
∫ ∞

0
(W(r) − E1) dr

∫ r

0
(W(r ′) − E1)K(r ′, r) dr ′ (4.1)

where the kernel,

K(r ′, r) = P0(r)P0(r
′)

∫ r

r ′

1

P0(r ′′)
dr ′′ (4.2)

depends only upon the unperturbed probability density. It should be noted that the kernel is
singular both at r ′ = 0 and as r → ∞, but that these divergences are more than compensated
by the zeros in P0(r

′) and P0(r).
A simpler-looking formula may be obtained by integrating either equations (3.16) or (4.1)

by parts. Defining

Q(r) =
∫ r

0
(W(r ′) − E1)P0(r

′) dr ′ (4.3)

then, from equation (3.16),

E2 = Q(r)

∫ r

0

1

P0(r ′)
Q(r ′) dr ′

∣∣∣∣
r=∞

r=0

−
∫ ∞

0
Q(r)

1

P0(r)
Q(r) dr. (4.4)

The integrated term vanishes and we are left with

E2 = −
∫ ∞

0
[Q(r)]2 1

P0(r)
dr. (4.5)

Provided that P0(r) does not vanish, other than at zero or infinity, then the integrand is
positive and finite so E2 is negative. This is still true for non-zero angular momentum, where
P0(r) goes to zero faster in the vicinity of r = 0. The negative nature of E2 is a well known
result for the ground state of a system [4], the ground state here being defined as the one where
the wavefunction has no nodes.

For excited states, the zeros ofP0(r) are of even order, normally second, and the integrands
of equations (4.1) or (4.5) are apparently singular at such points, though Bender had already
pointed out [2] that the energy shifts remain finite. To prove this, we choose to study an
associated problem, where all the zeros of P0(r) are displaced into the lower half of the r-
plane by an amount −iε. In this case the integrations can be displaced into the upper half
r-plane and, at the end of the evaluation, the limit ε → 0 is taken. In the vicinity of a node at
r = a, the singular part of the kernel in equation (4.2) is

Ksing(r
′, r) = C(r−a + iε)2(r ′−a + iε)2

∫ r

r ′

1

(r ′′−a + iε)2
dr ′′ = C(r − a)(r ′−a)(r−r ′)

(4.6)

where the answer is well behaved in the limit ε → 0. It is, however, important to note that for
r > a > r ′, Ksing(r

′, r) becomes negative in such a case and E2 no longer has to be negative.
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4.2. Results

As a concrete example of second-order perturbation theory, consider a particle moving freely
in a box of radius 1. In such a case, the upper infinite integration limit is replaced by the box
radius. The unperturbed probability for r � 1 is

P0(r) = 2 sin2(kr) (4.7)

where k = nπ , n = 1, 2, 3, . . . . The corresponding energy levels, in units of h̄2/2m, are
E = n2π2. Using the −iε prescription, the kernel becomes

K(r ′, r) = 1

nπ
[sin(2nπr ′) sin2(nπr) − sin(2nπr) sin2(nπr ′)]. (4.8)

After rearranging equation (4.1), the two terms in (4.8) give the same result and

E2(n) = 2

nπ

∫ 1

0
(W(r) − E1) sin2(nπr) dr

∫ r

0
(W(r ′) − E1) sin(2nπr ′) dr ′. (4.9)

The perturbation W(r) = r leads to E1(n) = 1
2 and, from equation (4.9),

E2(n) = 1

48n2π2
− 5

16n4π4
. (4.10)

Only for n = 1 is E2 negative; the sum of E2 over all values of n vanishes as required on
general grounds.

This particular perturbation couples all the different states of the infinite square well but
the same result could be derived using standard second-order perturbation theory by summing
over an infinite number of intermediate states:

E2(n) = 64

π6

∑
m+n odd

m2n2

(n2 − m2)5
. (4.11)

The probability density can be calculated to first order in λ from equation (3.12) but, for
this perturbation, the mean value of position can be obtained directly from the energy shifts.
Using equations (3.8) and (3.15), we see that to order λ

〈x〉 = E1

λ
+

2E2

λ2
= 1

2
+

λ

24n2π2
− 5λ

8n4π4
= 1

2
+

λ

24E0
− 5λ

8E2
0

. (4.12)

For λ > 0, the expectation value falls in the left-hand side of the box only for the ground
state. The potential is less repulsive here than the average, giving rise to an attractive second-
order energy shift. On the other hand, in the classical limit the particle spends more time
in regions where the potential is more repulsive. This suggests that 〈x〉 should be bigger
than 1

2 at large E0 and that the second-order shift should be repulsive. This is indeed the
case and the classical average position corresponding to purely radial motion, evaluated using
equation (2.4), is 1

2 + λ/24E0. This agrees with the classical limit of equation (4.12).
As a more physical example, consider the evaluation of the energy shift of an s-wave

pionic atom. Here one has to study the influence of a short-range potential on the energy
levels of a π− in a Coulomb orbit around a proton or heavier nucleus. This was investigated
in a perturbation approach many years ago [5]. The unperturbed ground-state distribution is
P0(r) = 4(r2/a3) exp(−2r/a), where a is the pion Bohr radius. Taking as a perturbation
λW = λ exp(−2βr), the first-order shift is

E1 =
(

1

1 + βa

)3

(4.13)
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and the auxiliary function

Q(r) =
(

1

1 + βa

)3

e−2(β+1/a)r [−2β2r2 − 2βr(1 + 2r/a) + (e2βr − 1)(1 + 2r/a + 2r2/a2)].

(4.14)

The second-order shift can then be evaluated analytically from equation (4.5) but we only
quote the answer in the large-atom limit where

Q(r) ≈ 1

β3a3
[1 − e−2βr(1 + 2βr + 2β2r2)] (4.15)

and E2 ≈ −5/32β5a3. In this limit the perturbations to the energy are proportional to the
successive Born approximations to the free scattering amplitude or, more correctly, free K-
matrix element since we are using real boundary conditions. However, our approach allows
higher-order Coulomb corrections to be evaluated and these might be significant for heavy
targets.

In the estimation of the second-order shift in standard perturbation theory, the contribution
from the bound intermediate S states is negligible in the large-a limit; all that then survive are
the virtual transitions to the Coulomb continuum.

For explicitly soluble potentials, such as the square well, it is always possible to use the
standard second-order approach. This is no longer straightforward if all that is known is a
phenomenological unperturbed wavefunction. Consider for example the case where

P0(r) = 30r2(1 − r)2�(1 − r). (4.16)

With the same perturbation W(r) = r , one obtains E2 = 1
2 and Q(r) = 5r3(r − 1)3, which

lead to

E2 = − 1
756 . (4.17)

This is about 20% larger than the corresponding square-well result, caused by the unperturbed
probability being larger at the edges of the well.

5. Variational approach

The derivation of the variational method for the ground state eigenvalue starts from the ansatz
that all other energies in the spectrum lie above it. We here establish a more modest local
variational principle for the probability equation.

Consider the energy functional

F [Pλ] =
∫ ∞

0

[
P ′

λ(r)
2

4Pλ(r)
+ U0(r)Pλ(r)

]
dr. (5.1)

This corresponds to the standard form [4], provided that the trial probability density Pλ(r)

satisfies the boundary conditions discussed in section 2. If Pλ(r) is close to the exact solution,
then it satisfies the differential equation (1.4) with the potential U(r) = U0(r) + λW(r), so
that

Eλ =
∫ ∞

0

[
P ′

λ(r)
2

4Pλ(r)
+ (U0(r) + λW(r))Pλ(r)

]
dr. (5.2)

Subtracting one equation from the other,

F [Pλ] − Eλ = λ

∫ ∞

0
W(r)Pλ(r) dr. (5.3)
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We now expand Pλ and Eλ in power series, as in equation (3.1). Using the expressions of
equations (3.8), (3.15) derived for the first- and second-order energy shifts, we find that

F [Pλ] = E0 − λ2E2 + O(λ3). (5.4)

It is therefore seen that F [Pλ] is stationary at λ = 0. Furthermore, in the case of the
ground state where the density has no nodes, we have shown that the second-order shift E2

is negative. For such a case the stationary point is therefore a local minimum. A different
technique might be required to show that it is the expected global minimum.

6. Comparison with Bender’s formalism

Clearly, anything that can be achieved from the probability equation must also be obtainable
from the Schrödinger equation. Expanding the wavefunction in powers of the potential strength
λ,

u(r) ≈ u0(r) + λu1(r) + λ2u2(r) + λ3u3(r) + · · · (6.1)

Bender [2] shows that[
d2

dr2
+ U(r) − E0

]
un(r) = −W(r)un−1(r) +

n∑
j=1

Ejun−j (r). (6.2)

This can be simplified by introducing the auxiliary function Fn(r) such that

un(r) = u0(r)Fn(r). (6.3)

The first-order correction can then be written as

d

dr

[
u2

0(r)
dF1(r)

dr

]
= (W − E1)u

2
0(r) (6.4)

which corresponds to our equation (3.6) when we identify F1(r) = 1
2P1(r)/P0(r) + C. The

second-order energy shift in this approach is therefore equivalent to that of equation (3.16).
However, it is important to note that Bender does not impose the normalization condition on
the wave functions, so that the integration constant C is not fixed by this physics, but rather
by requiring Fn(a) = 0 at some arbitrary radius a. Fortunately, the value of E2 turns out to
be independent of the choice of C, and this remains true in higher order. The very different
appearance of our form for E3 in equation (3.20) from that of Bender is due to our imposing
probability normalization order by order.

It should be noted that for certain simple potentials, such as |xp|, it is possible to evaluate
systematically the energy shifts to high order using the Bender technique [6]. On the other
hand, a numerical evaluation of E2 would require one to work out a triple integral in Bender’s
formalism, which is similar to our equations (3.16) or (4.1). This is to be compared to the
two-dimensional mesh needed to calculate the more compact form of equation (4.5). A further
advantage of our approach is that the Pn(r) are directly the probability changes, whereas
Bender’s Fn(r) remain to be normalized.

7. Conclusions

In the case of real stationary solutions to the time-independent Schrödinger equation, it
is possible to derive a second-order nonlinear or a third-order linear equation for the
corresponding probability density. For a single particle, moving under the influence of a central
potential, this reality condition may be imposed for each partial wave, even in the continuum.
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The probability equations do not involve transitions to other states and so normal perturbation
theory, which requires an expansion in terms of a complete set of eigenfunctions, is clearly
inapplicable. Nevertheless, we have developed a perturbative treatment of the equation to third
order in the energy shift which, we subsequently found, coincides with the expressions derived
in a different way by Bender from the Schrödinger equation. The expressions for the changes
in the probability density are, however, rather different since Bender chose not to require
the normalization condition, which we imposed separately in each order of perturbation. It
is of course always possible to recover the correct forms of the perturbed wavefunctions
by renormalizing Bender’s full solution and, when this is done, our two methods become
equivalent. However, our explicit formula for the second-order energy shift might be simpler
to evaluate numerically.

Since we are working within a partial wave basis, we require the perturbation to have
spherical symmetry so that equations do not couple different values of the angular momentum.
If that happened in the scattering domain, it would not allow us to eliminate the complex
phases so as to leave the real wavefunctions which are necessary for the probability approach.
It is still possible to evaluate low-order perturbations by solving inhomogeneous differential
equations [7].

In the computer age, perturbation theory is less important than it was and one has to give
good arguments for going beyond second order unless, as in [6], one can evaluate the series
to high order. We have given alternative forms of the second-order energy shift and applied
equations (4.1) and (4.6) to simple physical problems. For the ground state one immediately
deduces the standard result that E2 should be negative. Care has to be taken in the vicinity
of the nodes when treating excited states, but this may be handled by displacement into the
complex plane.

In this paper we have only investigated the changes in the bound state spectrum when
the potential is modified. Similar techniques, but with different boundary conditions, may be
used to investigate the influence of an extra potential λW(r) on the scattering phase shifts.
The energy variation of the scattering wavefunction and phase shift can also be studied by
perturbing in the energy E. We wish to stress that all these effects depend purely upon the
perturbation and the unperturbed density; explicit knowledge of the unperturbed potential is
not necessary [3]. This exposition will be deferred to a later publication.
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